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1. Introduction 

Consider a second order differential equation of the Lienard type 

                   �̈�𝑥 + 𝑐𝑐�̇�𝑥 + 𝑎𝑎𝑥𝑥 = ℎ(𝑡𝑡)                                                               (1.1) 

with boundary conditions 

                       𝑥𝑥(0) = 𝑥𝑥(2𝜋𝜋)  

                       �̇�𝑥(0) = �̇�𝑥(2𝜋𝜋) 

where ℎ(𝑡𝑡) is one of the following 𝑇𝑇 −periodic functions: ℎ(𝑡𝑡) = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝑤𝑤𝑡𝑡), ℎ(𝑡𝑡) = 𝑘𝑘𝑐𝑐𝑘𝑘𝑘𝑘(𝑤𝑤𝑡𝑡) 

and ℎ(𝑡𝑡) = 𝑒𝑒(𝑡𝑡). �̈�𝑥 is the second derivative with respect to time and 𝑐𝑐,𝑎𝑎 are real constants. 

Lienard equation named after French physicist Alfred-Marie Lienard is a second order 
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differential equation used to model oscillating circuits [1]. The equation is intensely studied 

during the development of radio and vaccum tube technology. In the presence of a linear 

restoring and non-linear damping, Lienard equation describes the dynamics of a system with one 

degree of freedom. These can be seen in the generalized Lienard equation 

                 𝑥𝑥′′(𝑡𝑡) + 𝑓𝑓(𝑥𝑥)𝑥𝑥′ + 𝑥𝑥 = ℎ(𝑡𝑡)          (1.2) 

where 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are continuously differentiable on ℝ. If the function 𝑓𝑓 has the property 

𝑓𝑓(𝑥𝑥) < 0 for small |𝑥𝑥|, 𝑓𝑓(𝑥𝑥) > 0 for large |𝑥𝑥| ie. If for small amplitudes the system absorbs 

energy and for large amplitude dissipation occurs, then in the system one can expect self-existing 

oscillations [2]. An important special case of the Lienard equation is the Vander Pol equation 

which is used to model the periodic firing of nerve cells driven by a constant current [3]. Due to 

importance of Lienard equation in ecological, biological as well as mechanical systems, many 

researches have used different techniques to obtain solutions of Lienard equation with 

resounding results. For instance see [4]-[7]. On the asymptotic stability of Lienard equation see 

[8]-[13] and the reference therein. 

This paper is motivated by studying [14] and [15]. The objective of this paper therefore is to 

investigate the stability and asymptotic stability of the equilibrium point formed by a Lienard 

equation using Lyapunov direct method. The result presented in this paper in an improvement of 

the result announced in [16]. 

This paper is divided into four sections. In section 2, we present some preliminary results and in 

three, we presented the results and discussion, demonstrating the numerical solution of the 

Lienard equation using MATHCAD software and in five, we concluded.  

2. Preliminaries 

Definition 2.1 Consider the system 

     �̇�𝑥 = 𝑓𝑓(𝑡𝑡, 𝑥𝑥),             𝒙𝒙(𝒕𝒕𝟎𝟎) = 𝒙𝒙𝟎𝟎                                                     (1.3) 

where 𝑥𝑥: 𝐼𝐼 → ℝ𝑛𝑛 and 𝑓𝑓:𝐷𝐷 ⊆ 𝐼𝐼 × ℝ𝑛𝑛 → ℝ𝑛𝑛 are maps, 𝐼𝐼 is an interval of real line, 𝐷𝐷 is an open 

subset of ℝ × ℝ𝑛𝑛;  𝑘𝑘 ≥ 1 and 𝑓𝑓 is such that (1.3) has a unique solution. 
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(a) Let 𝑧𝑧(𝑡𝑡) be a solution of (1.3). The solution 𝑧𝑧(𝑡𝑡) of (1.3) is said to be stable (in the sense of 

Lyapunov) if given 𝜀𝜀 > 0 there exist 𝛿𝛿 = 𝛿𝛿(𝑡𝑡0, 𝜀𝜀) > 0 such that all solution 𝑥𝑥(𝑡𝑡) of (1.3) 

satisfying ‖𝑥𝑥0 − 𝑧𝑧0‖ < 𝛿𝛿 implies ‖𝑥𝑥(𝑡𝑡) − 𝑧𝑧(𝑡𝑡)‖ < 𝜀𝜀 for 𝑡𝑡 ≥ 𝑡𝑡0  

(b) If 𝛿𝛿 = 𝛿𝛿(𝜀𝜀) only we say that the stability is uniform ie it does not depend on time at any time 

the solution holds. 

(c) The trivial solution 𝑥𝑥 = 0 of (1.3) is said to be asymptotically stable if it is both stable and 

such that  lim
𝑡𝑡→∞

‖𝑥𝑥(𝑡𝑡)‖ = 0. 

(d) The trivial solution 𝑥𝑥 = 0 of (1.3) is said to be uniformly asymptotically stable if it is both 

uniformly stable and lim
𝑡𝑡→∞

‖𝑥𝑥(𝑡𝑡)‖ = 0 holds. 

(e) The trivial solution 𝑥𝑥 = 0 of (1.3) is said to be unstable if for any 𝜀𝜀 > 0 there exist a 𝛿𝛿 =

𝛿𝛿( , 𝜀𝜀) > 0 such that all solutions 𝑥𝑥(𝑡𝑡) of (1.3) satisfying ‖𝑥𝑥0‖ < 𝛿𝛿 implies ‖𝑥𝑥(0)‖ > 𝜀𝜀 for 

𝑡𝑡1 > 𝑡𝑡0. 

Remark: Lyapunov stability means that an arbitrary narrow 𝜀𝜀 −neighbourhood of the solution 

𝑥𝑥(𝑡𝑡) contain all the solutions of (1.3) which sufficiently close to 𝑧𝑧(𝑡𝑡0) = 𝑧𝑧0 at the initial moment 

𝑡𝑡0. 

Theorem 2.2 Consider the scalar equation 

       �̇�𝑥 = 𝑓𝑓(𝑥𝑥);      𝑥𝑥 ∈ ℝ𝑛𝑛,     𝑓𝑓(0) = 0                                                 (1.4) 

where 𝑓𝑓 is sufficiently smooth. Assume that  

(𝑘𝑘) 𝑓𝑓 ∈ 𝐶𝐶1 

(𝑘𝑘𝑘𝑘) Then there exist 𝐶𝐶1 function 𝑣𝑣:ℝ𝑛𝑛 → ℝ such that 𝑣𝑣(𝑥𝑥) > 0 for every 𝑥𝑥 and 𝑣𝑣(𝑥𝑥) = 0 if 

 𝑥𝑥 = 0 

(𝑘𝑘𝑘𝑘𝑘𝑘) Along the solution paths of the equation (1.4) �̇�𝑣 ≤ 0, then the solution 𝑥𝑥 = 0 of equation 

(1.4) is stable in the sense of Lyapunov. 

Theorem 2.3 Assume that  

(𝑘𝑘) 𝑓𝑓 ∈ 𝐶𝐶1 
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(𝑘𝑘𝑘𝑘) Then there exist 𝐶𝐶1 function 𝑣𝑣:ℝ𝑛𝑛 → ℝ such that 𝑣𝑣(𝑥𝑥) > 0 for every 𝑥𝑥 and 𝑣𝑣(𝑥𝑥) = 0 if 

 𝑥𝑥 = 0 

(𝑘𝑘𝑘𝑘𝑘𝑘) Along the solution paths of the equation (1.4) �̇�𝑣 < 0, if 𝑥𝑥 ≠ 0 and �̇�𝑣 = 0 ie �̇�𝑣 is negative 

definite then the solution  𝑥𝑥 = 0 of equation (1.4) is asymptotically stable in the sense of 

Lyapunov. 

3. Results and Discussion 

3.1 Stability Analysis by Lyapunov Direct Method. 

Lyapunov direct method is an importance concept in stability theory because it defines the 

behavior of solutions of some nonlinear differential equation and invariably helps to determine 

the stability of many differential equation [16]. To establish the stability of Lienard equation, it 

requires that ℎ(𝑡𝑡) = 0 which means that  

            �̈�𝑥 + 𝑐𝑐�̇�𝑥 + 𝑎𝑎𝑥𝑥 = 0               (1.5) 

Let 𝑥𝑥 = 𝑥𝑥1,  �̇�𝑥1 = 𝑥𝑥2,  �̇�𝑥2 = −𝑐𝑐𝑥𝑥2 − 𝑎𝑎𝑥𝑥1  

The equivalent system is given by 

             �̇�𝑥1 = 𝑥𝑥2 

             �̇�𝑥2 = −𝑐𝑐𝑥𝑥2 − 𝑎𝑎𝑥𝑥1 

Let us consider the function 𝑣𝑣:ℝ2 → ℝ is given by 

           𝑣𝑣 = 1
2
𝑥𝑥22 + 𝐻𝐻(𝑥𝑥1)                                                                (1.6) 

where 𝐻𝐻(𝑥𝑥1) = ∫ ℎ(𝑘𝑘)𝑑𝑑𝑘𝑘𝑥𝑥1
0  

Clearly 𝑣𝑣 as defined in (1.6) is positive semi-definite. The time derivative �̇�𝑣 along the solution 

paths of the equation (1.5) is 

             �̇�𝑣 = 𝑥𝑥2�̇�𝑥2 + ℎ(𝑥𝑥1)�̇�𝑥1                                                         (1.7) 

where ℎ(𝑥𝑥1) = 𝑎𝑎(𝑥𝑥1) 

            �̇�𝑣 = 𝑥𝑥2(−𝑐𝑐𝑥𝑥2 − 𝑎𝑎𝑥𝑥1) + (𝑎𝑎𝑥𝑥1)�̇�𝑥1   
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               = −𝑐𝑐𝑥𝑥22 − 𝑎𝑎𝑥𝑥1𝑥𝑥2 + 𝑎𝑎𝑥𝑥1𝑥𝑥2 

               = −𝑐𝑐𝑥𝑥22                                                                              (1.8) 

which is negative definite. Therefore by Lyapunov theorem, the system is asymptotically stable 

and hence stable in the sense of Lyapunov when ℎ(𝑡𝑡) = 0.                           

3.2 Stability Analysis by Cartwright Method. 

Lyapunov functions are vital in determining stability, instability, boundedness and periodicity of 

ordinary differential. We adopt the method of construction of Lyapunov function used in [17] and 

extend it to second order differential equation of Lienard type in equation (1.5). The procedure is 

as follows: 

First, we transform equation (1.5) into a system given by  

             �̇�𝑥1 = 𝑥𝑥2          (1.9) 

             �̇�𝑥2 = −𝑐𝑐𝑥𝑥2 − 𝑎𝑎𝑥𝑥1         (1.10) 

Writing compactly, we have 

              �̇�𝑋 = 𝐴𝐴𝑋𝑋          (1.11) 

Where    𝐴𝐴 = � 0 1
−𝑎𝑎 −𝑐𝑐� and 𝑋𝑋 = �

𝑥𝑥1
𝑥𝑥2�       (1.12) 

The method discussed here is based on the fact that the matrix 𝐴𝐴 defined in equation (1.12) has all 

its eigenvalues with negative real parts. Then from the general theory which corresponds to any 

positive quadratic form 𝑈𝑈(𝑥𝑥), there exists another positive definite quadratic form 𝑉𝑉(𝑥𝑥) such that                  

               𝑉𝑉 = −𝑈𝑈          (1.13)  

We choose the most general quadratic form of order two and pick the coefficient in the quadratic 

form to satisfy equation (1.13) along the solution paths of equation (1.10). Let 𝑉𝑉 be defined by            
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              2𝑉𝑉 = 𝐴𝐴𝑥𝑥12 + 𝐵𝐵𝑥𝑥22 + 2𝐾𝐾𝑥𝑥1𝑥𝑥2       (1.14) 

Differentiating equation (1.14) gives   

               �̇�𝑉 = 𝐴𝐴𝑥𝑥1�̇�𝑥1 + 𝐵𝐵𝑥𝑥2�̇�𝑥2 + 𝐾𝐾(�̇�𝑥1𝑥𝑥2 + �̇�𝑥2𝑥𝑥1)      (1.15) 

                  = 𝐴𝐴𝑥𝑥1𝑥𝑥2 + 𝐵𝐵(−𝑐𝑐𝑥𝑥2 − 𝑎𝑎𝑥𝑥1)𝑥𝑥2 + 𝐾𝐾𝑥𝑥22 + 𝐾𝐾𝑥𝑥1(−𝑐𝑐𝑥𝑥2 − 𝑎𝑎𝑥𝑥1)   (1.15) 

                  = 𝐴𝐴𝑥𝑥1𝑥𝑥2 − 𝐵𝐵𝑐𝑐𝑥𝑥22 − 𝐵𝐵𝑎𝑎𝑥𝑥1𝑥𝑥2 + 𝐾𝐾𝑥𝑥22 − 𝐾𝐾𝑐𝑐𝑥𝑥1𝑥𝑥2 − 𝐾𝐾𝑎𝑎𝑥𝑥12    (1.16) 

Simplifying the coefficients we have 

                  �̇�𝑉 = (𝐴𝐴 − 𝐵𝐵𝑎𝑎 − 𝐾𝐾𝑐𝑐)𝑥𝑥1𝑥𝑥2 + (𝐾𝐾 − 𝐵𝐵𝑐𝑐)𝑥𝑥22 − 𝐾𝐾𝑎𝑎𝑥𝑥12    (1.17) 

To make �̇�𝑉 negative definite, we adapt the Cartwright method (1956) by equating the coefficient 

of mixed variable to zero and the coefficients of 𝑥𝑥12 and 𝑥𝑥22 to any positive constant (say 𝛿𝛿) we 

have 

                    𝐴𝐴 − 𝐵𝐵𝑎𝑎 − 𝐾𝐾𝑐𝑐 = 0         (1.18)                        

                    𝐾𝐾 − 𝐵𝐵𝑐𝑐 = 𝛿𝛿          (1.19) 

        −𝐾𝐾𝑎𝑎 = 𝛿𝛿          (1.20)                         

From equation (1.20) 

                    𝐾𝐾 = −𝛿𝛿
𝑎𝑎
          (1.21) 

Then substituting the value of 𝐾𝐾 into equation (1.19) we obtain 

                     𝐵𝐵 = −𝛿𝛿(𝑎𝑎+1)
𝑐𝑐𝑎𝑎

         (1.22) 

Substituting for 𝐾𝐾 and 𝐵𝐵 in (1.18) we have 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 10, Issue 2, February-2019                                                              335 
ISSN 2229-5518  

IJSER © 2019 
http://www.ijser.org 

                    𝐴𝐴 = − 𝛿𝛿
𝑐𝑐𝑎𝑎

[𝑎𝑎 + 𝑎𝑎2 − 𝑐𝑐2]        (1.23) 

The Lyapunov function is gotten by substituting for the values of the constant 𝐴𝐴,𝐵𝐵,𝐾𝐾 in equation 

(1.14) which gives 

                   2𝑉𝑉 = 𝛿𝛿
𝑐𝑐𝑎𝑎

[𝑥𝑥12(𝑎𝑎 + 𝑎𝑎2 − 𝑐𝑐2) − 𝑥𝑥22(1 + 𝑎𝑎) − 2𝑐𝑐𝑥𝑥1𝑥𝑥2]    (1.24)                 

                    𝑉𝑉 = 𝛿𝛿
2𝑐𝑐𝑎𝑎

[𝑥𝑥12(𝑎𝑎 + 𝑎𝑎2 − 𝑐𝑐2) − 𝑥𝑥22(1 + 𝑎𝑎) − 2𝑐𝑐𝑥𝑥1𝑥𝑥2]  

For 𝑉𝑉 to be positive definite  𝛿𝛿
𝑐𝑐𝑎𝑎

= 1 which gives 

 𝑉𝑉(𝑥𝑥) = 1
2

[𝑥𝑥12(𝑎𝑎 + 𝑎𝑎2 − 𝑐𝑐2) − 𝑥𝑥22(1 + 𝑎𝑎) − 2𝑐𝑐𝑥𝑥1𝑥𝑥2] > 0 

Hence at the equilibrium point, the system is asymptotically stable since �̇�𝑉 < 0 
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3.3. Numerical Solution of Lienard equation 
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Figure 1: Trajectory profile of Lienard equation 
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                                                              𝑎𝑎 = 0.6              𝑐𝑐 = 0.5 

Figure 2: Phase portrait of Lienard equation when 𝑎𝑎 = 0.6 and 𝑐𝑐 = 0.5 
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Figure 3: Trajectory profile of Lienard equation 
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                                               𝑎𝑎 = 0.01                                                  𝑐𝑐 = 0.03 
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Figure 4: Phase portrait for Lienard equation depicting asymptotic stability of solution as a spiral 

sink. 
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Figure 5: Trajectory profile of Lienard equation 
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Figure 6: Phase portrait of Lienard equation when 𝑎𝑎 = 0.2  and   𝑐𝑐 = 0.03 
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Figure 7: Trajectory profile of Lienard equation 

 

 

                                                           𝑎𝑎 = 0.5                           𝑐𝑐 = 0.6 
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Figure 8: Phase portrait for Lienard equation when 𝑎𝑎 = 0.5 and 𝑐𝑐 = 0.6 

 

 

4. Conclusion 

Lyapunov direct method and Cartwright method has proved to be a useful tool for the analysis 

of a Lienard type equation. Through some exploits on the first order equivalent systems, we 

established asymptotic stability and hence the stability of the equation using the two methods. This 

shows that the equilibrium point of Lienard equation is highly stable. The MATHCAD software 

has been shown to be effective in supporting the methods used in demonstrating the behavior of 

the Lienard equation. Using MATHCAD, we obtained the phase portraits and trajectory for 

different values of 𝑎𝑎 and 𝑐𝑐. The application of this work is found in mechanics where the oscillatory 

motion of the wheel of a moving vehicle is always directed toward a fixed point. However the 

disadvantage is that finding a Lyapunov function is more of an art than a science which makes this 

work open for further research. 
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